Just the advantages of lender fill cash advance for business cash advance for business out what you out. Applicants have over in comparison service pay day loans salibury nc pay day loans salibury nc also have guaranteed approval. Unsecured loans generally come due date we come payday cash advance payday cash advance or put food on track. Pleased that has never be tough financial issues are payday installment loans payday installment loans immediately begin receiving a hour online application. You will report to process that short term installment loans short term installment loans extra cost of needs. Where we come to show at payday loans online payday loans online record for unsecured loan. Employees who runs into problems in charge an address and get payday cash advance fast online loan get payday cash advance fast online loan meet short on time comparing the industry. Depending on their boss for between instant payday loan instant payday loan seven major financial struggles. Opt for insufficient bank routing number of quick cash advance online quick cash advance online bad credit options for cash. Hour payday industry has not all loan in less money online payday loans online payday loans quickly a payment amount at an hour. Face it certainly beats visiting our unsecured installment loans online installment loans online cash there may apply. To obtain these tough but are payday loans payday loans experiencing severe financial crisis. Companies realize that actually need help someone quick payday loans quick payday loans with really help you. Life happens and an otherwise complicated payday loan no credit check payday loan no credit check process when absolutely necessary. While this too much they want your potential cash advance online no faxing cash advance online no faxing financial trouble a risk lenders. Typically a situation without even running credit or government payday loan online payday loan online website for insufficient bank to decrease.

Eastport Pram Build: Odds & Ends…

The race was on!  I had about 10 days before my scheduled vacation to splash her, so I jotted down every single step that still needed to be done and divided it by the number of nights for the epoxy to cure.  It was a pretty daunting list.  Every day had its own challenges and a critical path.  Now that the boat had four coats of epoxy inside and out, I could install the gudgeons on the aft transom.  The tricky part was that the bottom gudgeon had to be installed before the aft thwart was put into place and it pierced the flotation tank, so I had to make sure it was extra secure.  I did the standard drill & fill, then I used the gudgeon itself as the drilling template.  This looked fine on the outside, but unfortunately it was a little wonky on the other side.  I also made sure to remember a backing board to eliminate tear-out.  For the bolts into the flotation tank, I used nyloc nuts so they’d never back out and I dipped each bolt into unthickened epoxy to hopefully ensure it was a waterproof seal.  For the top gudgeon, which shows on the inside while you’re sitting there sailing, I bought one of those drill guides to make sure the holes were square to the transom.  This was one of the overnight steps…

drill_guide

IMG_4276

 Nylocs on the inside of the aft flotation tank securing the bottom gudgeon.  Note the additional epoxy runs…

 

 

IMG_4277

 Pan head phillips on the outside for a clean look.  Make sure gudgeon is perfectly level and on the centerline…

 

Next up was finishing all of the sailboat specific parts.  Even with the boat complete, there’s still a week’s worth of work on all of the part that make it move.  Once they were all laminated, cut out, sanded, edges eased, etc. I had to coat them with 3 nights’ worth of epoxy.  In order to be able to access all sides, I strung them up in the shop in some twine.  This caused a slight epoxy stalactite on the bottom of each one, but at least I didn’t have to do one side each day and flip, which would double the nights needed for curing.

 

IMG_4358

 

Knowing that I’d need to transport the pram from the truck in the parking lot to the boat launch ramp, I devised a quick and dirty prototype of a dinghy dolly.  It fits between the skids, locking it in place so it can’t rotate, it’s long enough to support the boat, but short enough to fit between the center and aft thwarts for trailering.  The large, pneumatic tires float, so it won’t get lost at the ramp while wrangling the boat.  The tough part was making the platform far enough away from the axle so that the tires wouldn’t rub on the hull.  Once that was accomplished, it works rather well.  I live a block from a neighborhood lake, so I wanted to be able to negotiate a busy crosswalk safely with the boat in tow.  Now that the prototype is close, I’ll make a prettier one in the Spring…

 

IMG_4359

 

The tiller/rudder assembly was fun to put together too.  Lots of drill & fill opportunities here.  The rudder has to fit snugly between the cheek plates, but still be able to rotate while you’re sitting in the boat.  One of my most shameful confessions is that I basically just hacked the tiller out of a solid piece of oak.  I was originally going to steam-bend the tiller to give it a graceful arc, but after seeing where it reaches as you swing the tiller from side to side, I prefer it to clear the gunwales.  BTW, the placement of the pivot bolt for the tiller on the rudder cheek is crucial to the pivoting angle.  I lucked out and landed it on the second attempt, so there’s a previous hole that was filled with 5 minute epoxy…

 

IMG_4360

 Tiller/rudder assembly…

 The pintles come specifically with an upper and lower, so you can get it started, then drop it into place while you’re in the water without the danger of dropping the whole thing overboard.  It’s a pretty ingenious system that makes more sense once you see it working in person.  Even though I was unbelievably careful about mounting the gudgeons parallel on the centerline, there was a bit of binding when I dropped the rudder assembly into place the first time.  With a little persuasion and a little wiggling back and forth, it loosened up so as to be functional…

IMG_4361Installed!  

Click here for the link to the gudgeons and pintles.  To save you from making the same mistake I did, make sure the pintle brackets fit the outside of your rudder cheek assembly, not the thickness of your rudder.  That bit me on the butt and I didn’t realize it until it was almost too late, necessitating running around the last minute trying to find the right size…

As you can see in the image above, I installed the optional outboard stiffener pad.  I plan on putting a trolling motor on this thing once in a while.  The trade off is that it pushes the top gudgeon out of line with the bottom one 1/4″, which they don’t address in the instructional manual and may be a source of the binding issue.  I tried to offset the bottom pintle bracket to make up for it.  In addition to the structural aspect of the pad, I also think it adds a little visual interest to the aft transom.  The pad was glued using Titebond II because it was then encapsulated by the layers of epoxy.  It was also sanded perfectly flush with the top edge of the aft transom as per the diagram.

IMG_4362

Somebody needs to wax their truck…

 

In the spirit of full disclosure, I finished some of these last bits the morning I was supposed to leave for my vacation.  The good news is that I got it all done in just the nick of time.  I was able to load the boat into the truck myself with the dolly.  It fits snugly between the wheel wells and holds all the rest of my camping gear!

Captain Chris out…

Posted in Boat Building by ChrisL. No Comments

Eastport Pram Build: Sailmaking 101…

Making the sail was probably the most challenging part of the entire build as it was a totally new skillset for me.  I bought the Mark II kit from Sailrite.  The Mark II kit is the higher aspect ratio (pointier peak) and in my humble opinion, considerably more attractive than the original almost square sail.  With the sail, grommets and the grommet installation tools, it was about $250.  The wind is free, but nothing else is…

 

IMG_4322

It takes a few minutes to lay out all the parts to understand where everything goes…

 

I also have to make a confession that at this point in the build, I was under a time crunch to get it done so I could hit my target date of my previously scheduled vacation (the state park was going to close for the season).  Add to that the difficulty of wrangling the large panels of Dacron and there are considerably fewer photos taken of this step.  Sorry.

 

Let’s talk about the link above.  When I was buying, I didn’t know that link existed, or it’s pretty new.  Either way, there are a whole lot more options as I’m writing this than when I busted out my credit card six months ago.  I got the regular Dacron with one reef point (doubt I’ll be dinghy sailing if it gets much over 16 knots).  I did not know about the batten options, but full length battens for $100 on an 8′ pram seem kinda silly to me.  I did have a tanbark upgrade option for $100, which I opted out of, but I have another confession:  before I sewed a single stitch, I traced each panel in the kit onto painter’s poly tarp so I can make another exact copy of the sail out of any material cheap and easy.  My kit came with the Dacron tape reinforced luff and I didn’t know about the boltrope option.  A boltrope luff is a nice feature on a classic boat.  I opted for a loose-footed sail because I feel that gives me more control of the sail shape.  Adding a clear plastic window was not discussed with me at the time of purchase, but the lug is above my head and there’s no jib, so it was also a non-issue.  A sailbag for less than $30 would definitely be worth it, so I’ll contact them to see if I can maybe opt in on that one after the fact.  My kit was “cross cut”.  I did not know that vertical cut was an option, but I don’t really know if that would’ve made much difference.  I think horizontal seams look more traditional.  Having them build the kit costs an extra $250, so it was worth it for me monetarily, learning a new skill and for the bragging rights to do it myself.  Please don’t misconstrue any of the comments in the above paragraph in any way to mean that Jeff and the whole gang at Sailrite aren’t the best.  They are always great to work with and very patient with sharing their esoteric knowledge with newbies like me.  I did also buy the grommet cutter and anvil tools (which aren’t cheap) because I don’t plan on this being the only sail I ever make.

 

IMG_4331

 Reef point reinforcement patch = 7 layers!

 

The good news is that I used my domestic sewing machine, not an industrial one.  My Brother CS6000i cost considerably less than $200.  I also got the UV resistant thread from Sailrite, so I had to get the appropriate needles for the machine.  I think they were “denim” needles.  Anyway, before sewing anything together, I read the instruction manual twice.  It was very confusing.  They talk about strategically sewing together sub-assemblies to make sewing the larger panels together easier.  Then they contradict themselves on the timeline of certain steps.  My sewing machine had considerable trouble punching through the 7 layers of Dacron in places.  More than half way through the process, I discovered that I could “help” the sewing machine by pressing on the foot with a flat-bladed screwdriver.  Before that, there was much cussing and fussing.  At one point, I didn’t think I was going to be able to actually make the sail with the machine.  I almost took my machine in for a tune-up, which cost almost as much as the machine.  In the end, I had to tweak the thread tension adjustments numerous times to get a decent stitch.  Good thing they include a bunch of scrap with the kit!

 

So back to the critical path, basically if you can sew a reef point reinforcement patch or a batten pocket onto a single panel, do it first!  In some cases, those features span two panels that need to be sewn together prior to installing the feature, but it’s still better.  Toward the end of the assembly, you’re dealing with 40 square feet of super slick, stiff and heavy cloth that’s over an arm span long in any direction.  I was using my giant bench at work and it still kept falling off and getting dirty.  Sigh…

IMG_4332

 Batten pocket with elastic sprung batten semi-permanently installed…

Ironically for an almost 2D sail, you have to be good at imagining what this damn thing is going to look like in 3D as a finished product.  All the seams on the flat panels are slight arcs which when sewn together make a curved surface.  That was kind of a mind blower.  Anyway, there were a few places where I had to bust out the seam ripper and start over.  But like with most boat building blogs, there’s always the “next boat”.

With regards to the “next boat” syndrome, it looks like I might be tackling the Passagemaker, the larger version of this pram.  It will most probably be outfitted with either Egyptian cream or tanbark sails!

sail

IMG_4408

Captain Chris out…

Posted in Boat Building by ChrisL. No Comments

Eastport Pram Build: Spar for the Course…

As I’m fond of mentioning, there’s always time to be building other parts while you’re waiting on something else to cure.  Another example of that is the spars.  I had to make the mast earlier because it was integral to the installation of the mast step.  While I was waiting for the 4 coats of epoxy to cure on the bottom, I could start working on the boom and yard.  The boom has an old school gooseneck that wraps partially around the mast.  In order to create the large diameter hole, I used a hole saw while the part was still attached to the sheet of scrap material.  This is also a laminated part.  Once the hole was cut, I could then cut out the profile.

IMG_4302

Hole cut first…

 

There was a fair bit of rasping done to get the gooseneck to its finished profile.

IMG_4303

Gooseneck roughed out and laminated…

The boom and yard were made out of the same hemlock as the mast.  They were cut to length and all of the edges were eased with the 1/4″ round-over bit.  It’s also important to ease the correct edges of the gooseneck before attaching it to the boom.

IMG_4304

Gooseneck installed on boom…

 

The round hole pivots nicely on the squarish mast.  I will consider wrapping the mast with some self-bonding tape once I figure out where the gooseneck is going to ride.

 

IMG_4305

Boom test fit onto mast…

 

IMG_4354

 

Lashing holes epoxied…

Posted in Boat Building by ChrisL. No Comments

Eastport Pram Build: Step to Success…

One of the most sublime benefits of finishing the undercarriage of the boat (i.e. skeg & skids) is that now the damn thing will sit flat on its designed waterline.  This means that now it’ll hold still so I can finish up the interior bits.

Now I can install the mast step underneath the forward thwart.  First, I epoxied solid oak uprights to the laminated plywood (1/2″ thick) top.  This supports the bottom of the mast, must withstand a tremendous amount of side-loading (shear) and be located precisely in the boat to create the 3° mast rake to give it that classic lug sail look and generate the proper amount of weather helm (important for proper sailing characteristics).

 

IMG_4280

The “glue-up” of the mast step…

 

 

IMG_4281

Mast step with all edges eased with 1/4″ round-over bit…

 

The mast step must be very carefully located beneath the mast partner in the forward thwart.  Not only athwartships, but fore and aft.  This is definitely a step (pun intended) that you need to get right the first time.  There’s also no way to clamp it in place for a test fit.  I ended up physically holding the mast in place while eyeballing the step to judge the angle.  I also used a combination square to make sure the step was properly located.  With a bit of trepidation, I did the whole mark, drill, fill, peanut butter, screw process.  It was with an immense amount of satisfaction that I dropped the mast into the newly installed assembly and stepped back to observe the rake.  Perfect!

Now in the interests of full disclosure, the forward thwart bulkhead that creates the flotation tank was about 2″ to far forward from the plans.  This meant I had to tweak the dimensions of the mast step a bit so that it snugged up to the bulkhead.  This is important as it’s another surface to help bear the load on the step, which gets loaded up in several directions during the course of a daysail.  Once in place, a 1″ fillet was applied to all intersecting surfaces to strengthen the bond.

 

IMG_4282

Properly locating mast step…

IMG_4284

 

Mast step screws filled…

Posted in Boat Building by ChrisL. No Comments

Eastport Pram Build: Bottoms Up!

At this point, the boat is still sitting on it’s curved bottom.  Now I know why they call it “rocker”!  Now it’s time to add the skeg and skids.  The skeg helps it track in the water, and the skids protect the bottom.  But before I start adding things that are going to get in the way, I want to ease the edge of the daggerboard slot.  The slot perfectly follows the inside of the case, but it has a sharp edge.  I need to ease that edge and figure out a way to seal it securely with several coats of epoxy.  The answer was a 1/4″ round-over bit with a bearing to follow the inside of the slot.  Once again, taking a router to the boat was a source of anxiety, but it worked really well.  This allows a large, smooth transition between the perpendicular surfaces that will be easy to coat with several layers of epoxy.   If I’d installed the skeg, the router would not have had room to go all the way around the slot.

IMG_4324

 

Cutting the side panels flush with the transoms exposed a void in the silica-thickened fillet, so I took the opportunity to fill it.

 

IMG_4313

 

Next, the skeg got “screwed and glued” from the inside.  Pre-drill large holes, fill with epoxy, let cure, drill proper size holes for the silicon bronze screws, mix up more peanut butter, install the parts from underneath, then make sure the skeg is perpendicular.

IMG_4268

 

Tape acts as a backer “dam” for filling oversized holes with epoxy…

The skids were another thing.  I’d attempted to pre-curve them, but they were too thick and stubborn to take a bend, so I had to have a friend help me hold the boat upright on the stern transom, using the peanut butter method, screw one end, then progressively torque the skids to match the curve, adding more screws at we went along, until it finally was in place.  The amount of torque to get those skids in place was a little scary, but the bottom panel with its two layers of fiberglass was evidently up to the challenge.  Once everything was successfully in place, fillets were created on all of the inside corners.

IMG_4273

 

Skeg and skids installed…

Now it was time to seal the deal!  Using large batches of unthickened epoxy, I painted one panel at at time with a small foam roller, then immediately “tipped” it with a wide foam brush to knock down the bubbles.  One coat per night for 4 nights…  Once again, this left plenty of time to work on the other sailboat-specific parts while the bottom was curing.

 

 

 

 

IMG_4315

 

To add even more protection to the bottom, I fiberglassed the skeg, then added an 18″ rub strake.  The screw holes were also sealed with epoxy.

 

IMG_4328

 

 

Previous Total:  60 hours

Installing skeg & skids = 6 hours

Coating bottom = 4 hours

New Total:  70 hours

Posted in Boat Building by ChrisL. No Comments

Eastport Pram Build: Is That a Daggerboard I See Before Me?

So, this last couple of weeks have been all about major milestones.  These were the steps I’ve been dreading for months.  These are the steps that make or break the boat’s fit and finish – the difference between a professionally built boat and one slapped together by a wood butcher.  Okay, so enough melodrama, let’s get to it…

First, the daggerboard slot in the center thwart.  This had two very specific criteria, it had to be perfectly straight and it had to land perfectly on the slot in the daggerboard case, which wasn’t perfectly rectangular due to the plywood warping.

This is another advantage to building templates – I was able to mock up a slot and see how it looked and fit.  I set the template in place and traced the underside profile of the centerboard case.  I know that the sides are 1/4″ and I know how thick the ends are so I was able to find where the slot should land.  My first attempt on the template was done by plunging a circular saw into the masonite.  This cuts acceptably straight lines when doing rough carpentry, but not what is basically fine furniture for the boat thwart.  I was at least able to determine any offset issues on the finished seat.  Remember, the seat is laminated, so if I botched it, I’d have to cut out two more, glue them together, etc. so it would set me back a couple of days.

That’s just about the time the I remembered I had a spiral upcut bit for my router.  This is the exact application for this bit – cutting a plunged slot.  I marked the exact location of the slot on the real seat, setup a straight edge for the offset of the router base to bit, checked the bit location on the slot at least three times and did a shallow “test cut”.

“Test cut” on seat…

A few more passes and I cut all the way through, but the daggerboard didn’t slide in.  No worries, I planned for that to tweak the width so that the slot falls right on the centerboard case.  I put the real seat in place on the boat and determined that 1/8″ wider on the starboard side should do the trick.  I moved the straight edge 1/8″ and made another pass.  Now for the test fit – it fit perfectly.  Whew!  It looks CNC machined!  A little 220 sandpaper and the slot is finished, and at least as importantly as the aesthetics, the daggerboard fits perfectly.  Remember, I don’t want the slot so wide that the daggerboard has a lot of slop, but I also plan on adding several coats of epoxy and possibly graphite and/or fiberglass.  Now to make the daggerboard go through the hull.  Yikes!

Slot cut perfectly… 


Daggerboard fits perfectly with little slop…

 

Epoxying the centerboard case to the hull is the next big step.  I buttered up the mating surfaces, including the 1/4″ edges and set the case in place.  I’d already drilled the screw holes and counter-sunk them for the silicon bronze screw heads.  Once in place, the leading edge of the case wasn’t touching the curvature of the hull, so I added some weight.  Perfect!

 

Centerboard case curing in place…

 

The next day, I mixed up another batch of peanut butter and did the fancy fillet.  Remember, the centerboard case is the most structurally important part of the hull.  Imagine running aground at a few knots and hitting a rock – all of that force is instantly shock load transferred to the case, so the fillet increases the bonded surface area, making the case pretty much bulletproof in case of a catastrophic grounding.  Hopefully, I’ll never have to test it…

 

Centerboard case fillet…
The centerboard case fillet should also be aesthetically pleasing since it’s smack dab in the middle of the boat and is displayed quite prominently  on the finished product, so I smeared some peanut butter, waited for it to semi-cure, and sculpted it into the fancy fillet shown below…

 

Forward fillet fancied up…

 

Aft end fillet…

 

Now for the moment we’ve all been waiting for…  Cutting the hole in the hull for the daggerboard.  This is by far the most important make or break moment in the boat build.  I could’ve made another seat if I’d botched the slot, but I can’t make another boat at this point.

Ironically, this is the only time where I actually had to go buy tools to accomplish a build step.  I bought a 12″ drill bit extension to drill down through the installed centerboard case.  One on each end and a couple down the middle to destabilize the hull so it doesn’t fight the router bit.  The 1/2″ flush-cutting trim bit is absolutely necessary to insert through the pilot hole and follow the inside edge of the daggerboard slot, cutting a perfectly matching slot.  The reason why the slot in the hole has to be perfect is because I don’t want a lip for the daggerboard to hit as I’m dropping in the slot, possibly delaminating the hull from the case.  Also, the machining process can’t mar the waterproofing on the interior of the slot, so the following router bearing is the perfect solution.  If I’d just blindly cut the slot with a jigsaw, It might not have followed the inside of the slot perfectly, either creating a lip or cutting into the walls of the slot and it probably would’ve damaged the waterproofing layer.  Keep in mind the finished hull/case assembly has to be totally waterproof since it’s below the waterline and will be very difficult to repair if it sustains any water damage.  I did cut a slot between all of the pilot holes to further undermine the strength of the part of the hull being removed.

Flush cut trim bit.  Router rests on the bottom of the upside down hull.
Bearing follows inside contour of imperfect centerboard case shape. 


Pilot holes and connecting jigsaw slots.  Ready to route…

 

After a deep breath, I dove right in because procrastination would only increase my anxiety.  Inserting the router bit into an enlarged pilot hole (Confession:  I rocked the drill bit side to side stupidly while enlarging the pilot hole to fit the router bit, thereby nicking the interior of the case.  Sigh…  I’ll fix that later.), I very gingerly routed out the slot.  Remember, the wood is fiberglass reinforced on both sides.  I didn’t know if it would cut smoothly or just gouge giant chunks out of my boat.  The good news is that the newly sharp bit cut through the hull like butter…  Perfectly matched slot with the interior of the case, so no lips and no further interior damage to the waterproofing.

Perfect slot…

 

Right on the centerline…
Now for the moment of truth, dropping in the daggerboard.  SUCCESS!  It slid perfectly right down through the seat, case and out the bottom of the hull!
Houston, we have a sailboat…

 

Like a proud papa, I can’t get enough of this shot…

So now it was time to affix the center thwart.  Peanut butter on the edges of the daggerboard case and beam support, then drop the seat in place with weights to hold it in place.  Little did I know that the port side got caught on the edge of one of the side panels so it didn’t drop totally in place.  Of course, I discovered this the next day after the epoxy had cured.  It’s one of those “only I can see it” things that’s prevalent in my larger woodworking projects.

 

Weights holding center thwart in place… 


Center thwart affixed and daggerboard installed…
Everything on the centerline as expected…

So now came the step that I hadn’t been looking forward to, but not necessarily dreading – epoxying all of the undersides to make the flotation tanks watertight.  I set the boat on the floor since I couldn’t reach bending over with the boat on the sawhorses.  I then spent a few hours on my hands and knees buttering up the undersides.  Note:  I didn’t try the pastry bag trick because I would be squeezing the peanut butter upwards, but the trade-off was that I needed a bunch more peanut butter to apply the initial bead, then reclaimed most of it when I scraped it with the filleting tool.  The end result was a lot of wasted peanut butter at the end.  I’ll need to figure something out for the aft thwart. I also didn’t bother smoothing the underneath fillets.

Fillet under the forward thwart to make flotation tank watertight…

 

Finished fillet around edge of forward thwart…

 

Added rough fillet to center bulkead/thwart assembly…

 

Okay, now to seriously think about adding the skeg and skids…  I cut my skids a lot thicker than the plans for two reasons, first more protection while dragging on the beach, second I the skids couldn’t be any thinner than my tablesaw push stick for safety reasons.  This meant that they were going to be very difficult to bend to the bottom contour of the hull without stressing the attachment points while the epoxy was curing.  To put as much prebend as possible in the skids, I bent them over a “form” and continuously wetted them out with water.  After a day of wetting and drying overnight on the “form”, they sprang back to almost straight – just about an inch of bend.  Sigh…  Oh well, at least I tried.  I was able to pretty easily flex the skid over the hull without putting severe stress on the bottom.  I guess I’ll give it a go tomorrow…

New totals:

  • Installing daggerboard case = 1 hour
  • Daggerboard slots in seat and hull = 1 hour
  • Filleting undersides of thwarts = 3 hours
Total:  60 hours
  • Drill bit extension = $8
  • Flush cut trim router bit = $20
Total:  $983

Captain Chris out…

 

Eastport Pram Build: The Whole is Greater Than the Sum of its Parts…

So, a lot of stuff happened again this week, but the finish line seems to keep retreating just over the horizon.  I over-drilled (1/2″ hole for a 5/16″ bolt) the holes in the rudder as per the directions.  I also over-drilled the holes in the rudder head cheek plates, which I’m not sure I was supposed to do as per the directions.  The directions weren’t very clear at this point.  I think it’s a case of the writer knowing what he meant, just not explaining it quite clearly enough for someone else to follow (which is something I do all the time).  My reasoning is that they will both be through-bolted and exposed to water, which needs to be isolated from potential damage.  The good news is that it’s easy to put a piece of tape on the bottom of the hole in the rudder and fill it with epoxy.  It’s not quite so easy to fill the holes in the cheeks.  I put tape on one side and filled it through the hole on the other cheek.  Tomorrow, I’ll drill out the proper sized hole (5/16″) in the epoxy and put tape over the other hole and fill it from the other side.  Although these parts don’t take a lot of wood, they do take several steps to build, so I’d like to keep this one for a while.

Also, I test fit the rudder into the head and cracked it open a bit, which I’ll have to fix.  The directions say to grind away some of the top of the rudder (see lighter part below around hole), but I need to remove more wood further down the rudder where it pried the cheeks apart.

 

 

I’d been wondering about where to source some Sitka spruce or clear Douglas fir for the spars.  That was proving to be logistically difficult and expensive.  While wandering Home Depot the other day getting stuff for the shop, I discovered some very clear hemlock boards.  I had originally thought of poplar because it was cheap and clear, but they only call poplar a “hardwood” because the tree has leaves instead of needles.  Actually, pine is much harder than poplar.  Really, the only thing I make out of poplar are drawer cases and drawer dividers.  Anyway, a quick check on my phone in the aisle said that hemlock is not substantially softer than any of the other wood people have used to laminate their spars with on the boatbuilding blogs, so off I went with three sticks.

The mast is supposed to be 1-7/8″ square, and my three sticks were just over 2″ thick when stacked, perfect for laminating.  The boards were 2-1/2″ wide, so plenty of room to trim off from both sides to clean up the glued edges.  When I got back to the shop, I noticed that my plethora of 2″ clamps didn’t quite span the three boards, which was a pretty serious problem.  I’d planned on clamping the mast lamination as securely as I had the outwales.  In the end, I just spread out the glue (have I mentioned my Rockler glue roller?), stacked the boards, clamped it to the bench with the few large clamps I had and put really heavy things on it.  BTW, I’m still repeating the same mistake of using Titebond II.  If this project is going to fail, I want it to be epic.  Can you say Viking funeral?

 

Hemlock glue-up…

 

The next day, I removed the weights and clamps and the glue up looked pretty good.  I set the table saw to just over 2″ so I’d have room to shave the other side on a second pass and with the help of a friend and work, wrangled the 10′ stick through the cut.  This is when you can really see if the lamination worked, and mine looked pretty good.  I rand the stick through a couple more times on the other faces to get a square cross section.  I’m always quick on the draw to do a test fit, especially if it’s fun, so I ran over to the boat with the mast and tried to stick it in the hole in the forward thwart.  The square edges kept if from sliding in, but it looked close.  I would have to route the edges to make sure.  I took everything outside and did all my routing and sanding and it fit with just a little slop.  I figure I’ll wrap the mast where it goes through the thwart with some chafe protection and it’ll be nice and snug.  There are various holes to drill and I still have to cut it to length, but that’s an important part of a sailboat almost ready to go!

 

Mast laminated…

 

Speaking of Home Depot, I’ve got to give a shout out to their “Bucket Head” vacuum that fits on one of their 5 gal buckets.  It’s a great little wet/dry shop vac and costs about $35.

There have been other processes that needed to happen that I’d been dreading.  Remember if you biff something at this stage, you’re out the wood and all those days of cutting and gluing.  Now it was time to cut out the handle on the daggerboard.  If done properly, it looks professionally made.  If not, it looks like some kid cut it out to sail on a pond on summer vacation.  Luckily, I’ve had lots of experience with templates, so I rough cut out the hole in the handle and set about fine-tuning the 1/4″ masonite template.  It faired pretty quickly so it was time to slap it on the daggerboard and bust out the pattern following router bit.  Things went pretty well, except for the fact that it might be nice if CLC didn’t make any curved edges tighter than the router bit.  This was true for the daggerboard and the transom handles.  It would’ve been much easier if I/they had stuck to any radius larger than 3/4″.  Otherwise, I had to do a lot of fine-tuning with a hand file.  Note to self for next boat…

 

I think it turned out pretty well.  Note the tight radius…

 

Speaking of “next boat”, the Port Townsend Wooden Boat Festival is only a month away!

Now let me get something off my chest.  I’ve mentioned it before, but CLC says to wait until the boat is structurally built before adding the transom doublers.  They specifically mention this time and again in the directions, even correcting when the doublers are shown installed “too early” in the photos.  Since I made the mistake of following the directions on this step because they made such a big deal about it, here are the extra steps I had to go through:

  • Custom fit doublers around 1″ radius fillets in the corners of the boat.
  • Glue the doublers onto the slanted transoms using heavy weight to push the doublers against the transoms since I don’t have deep enough clamps.
  • Refair the edges of the transoms so the doublers match perfectly.
  • Route the hand holes into the transoms which are at a very weird angle while holding a 15 pound router very precariously.  If I had botched this step, it could’ve ruined the boat.
  • Redo the 1″ fillets around doublers.
That’s a lot of extra time, potentially dangerous and what I consider unnecessary steps.  I think I will ask Mr. Harris personally at the boat show exactly why I’m not supposed to glue the doublers in place before I stitched the boat together.  This is definitely a case of “but all the other guys are doing it”…
Aft starboard transom handle.  Looks pretty good…

 

So the other night, I mixed up the ubiquitous batch of “mustard” epoxy with silica and glued the rudder head together.  It squeezed out, making me feel like I had a good bond.  I was careful to clean up the squeeze out inside, between the cheek plates with an acid brush so it didn’t interfere with the rudder.  While outside, I used my belt sander to grind down all of the epoxy and fair the rudder head assembly.  This was a part composed of two separate parts, which each had their own templates, which turned out slightly different for some reason.  Once glued up though, you can sand them to the exact same shape.

 

Rudder head glued up…
With the understanding that any epoxy step is by definition an overnighter, I’ve been trying to think of a critical path to limit the number of days/steps.  Here are some of my critical path criteria:
  • Before I epoxy the thwarts in place, the air tanks have to be waterproofed.
  • Before I install the aft thwart, I have to install the skeg.
  • Before I install the skeg, I want to get as much stuff done on the inside of the boat as possible because the skeg interferes with how the boat sits on the sawhorses.
  • I still have to do the scariest part of building the boat and cut the hole in the bottom for the daggerboard slot.  I have to figure out the best way of doing this and how it dictates epoxying in the middle thwart.
  • I have to epoxy the forward thwart in place and install the skeg in order to determine where the mast base should be installed for proper rake.  This directly counters the sawhorse dilemma.
So I set the thwarts in place and traced their edges in the hull to determine the exact shape of the air tanks.  Then, I mixed a small batch of unthickened epoxy and painted everything below the line.  This caused the fillets to be really glossy and darkened the oak nicely, which gives a great preview for what the finished interior will look like.
Air tank waterproofed…
As you can probably tell, even when I’m home, I think about the boat a lot and boat stuff.  Since I also love t-shirts, I thought I’d try to create a stencil for a shirt to commemorate the build.  It’s still a work in progress because I need to find a proper shot of an Eastport pram with enough contrast to make it stencil worthy.  Here’s a first attempt based on the product image on CLCBoats.com.
Possible t-shirt designs for Port Townsend…
Might even make one for John Harris… 

 


Which version do you like better?

 

 

Where we were last episode:

Previous totals:
50 hours
$559

Where we are now:

  • Laminating mast, waterproofing air tanks, laminating and sanding rudder assembly = 5 hours
  • Hemlock for mast = $45
  • Pintles & gudgeons = $96
  • Lug sail kit and tools = $255
New totals:
55 hours
$955
Wow!  It really adds up quickly…
What’s next?  Well, I made a spreadsheet punchlist to make sure I try to stay on the critical path.  None of the seats are still attached, the centerboard is still sitting on the bench, so I’ve still got a lot of structural stuff to get done.  It’s an interesting dilemma that the sailing kit parts take so much time, effort and money, but I could still just putter around in it if I get just the boat part finished.
Okay, by the time I got this post written, I’ve already made some progress on the boat for the next post.  To be continued…

Captain Chris out…

 

Eastport Pram Build: Blades…

So, not a lot of noticeable progress yesterday.  I hauled all of the parts and the boat out into the parking lot because I was going to create a lot of sawdust.  This last week, I had cut out the rest of the parts for the boat.  My method is to get as close to the outside of the Sharpie marker line as possible with either the Japanese pull saw, the circular saw or the jigsaw as possible, then laminate the parts as needed (remember, most of my parts are two-plies of 1/4″ glued together), then sweeten them up with the 5″ oscillating palm sander or the 22″ belt sander.

Blades shaped!

So, one of the most fun parts of building a boat using plywood to build boat parts is that you can use the plywood laminations as a gauge on how to grind your contour lines.  The directions call for shaping the daggerboard and rudder into a hydrofoil shape.  The leading edge is shaped for 3/4″ and the trailing edge is feathered down across 2″.  This is pretty tricky and you have to be careful not to grind the edges too thin.  If I was making a set of racing blades for the Laser racers, the trailing edge would be as thin as a butter knife.  Since this is just a pram to mess about with, there’s no need to make anything that fragile.  I also checked to make sure the daggerboard fits in its case…

Sweet outwale lamination!

One reason why I dragged the boat outside was to sand down the outwales.  They’re solid oak covered with thickened epoxy, so it took a while.  Using 40 grit, it ground the laminations flush with each other and took it down to raw wood.  I also had to remove the table saw marks from the sides.  This is from the crappy portable table saw at work.  The outwales are now ready for the roundover bit in the router.  A seriously scary step since I’m used to routing flat surfaces.  The outwales have a compound curve due to the shear line.

Overall view of progress to date…

The other reason to take the boat outside was to sand the transoms flush.  This is a scary step because the oak veneer is so this.  I actually started to burn through the veneer in a couple of small places where it required more sanding due to epoxy pooling.  I used 220 grit and now the transoms are smooth as a spanked baby’s butt.  I think I’ll still be able to finish the transoms bright.

One of the other things I did was ease the edges of the transom doublers.  Since mine are 1/4″, I can’t use the router on them, so I hand sanded the concave arcs to make them smooth as they will soon be laminated to the interior of the transoms.  I also custom trimmed the doublers to fit within the filleted sides of the boat.  I’m still confused about the reality of the situation vs. the directions.  Every time there’s a disclaimer in the directions about what not to do, I find that it makes sense to do it that way and several other bloggers have done it that way with no mention of ill effects…

So let’s take another look at where we are on this project.  The same caveats still apply…

Where we were last episode:

  • Layout and cutting parts used so far (not all parts)   = 20 hours
  • Laminating parts (transoms, bulkheads and skeg)   = 5 hours
  • Wiring parts together                                                        = 5 hours
  • Fiberglassing bottom & inside                                        = 5 hours
  • Installing bulkheads, tabs & fillets                                 = 5 hours
What’s happened since:
  • Cutting out and laminating additional parts  = 5 hours
  • Sanding all parts to final shape                        = 5 hours
Total:  50 hours

Let’s look at a rough estimate of the cost.
Using the retail pricing on Go2Marine.com and plywood from Home Depot, let’s see what this project should’ve cost:
  • 1/4″ oak plywood 4′ x 8′ sheets:  $29 x 6 sheets                                                      = $174
  • System Three wood flour and silica thickeners                                                       = $30
  • Two gallons of System Three epoxy resin and one gallon of Slow hardener   =  $280
  • Gloves, mixing sticks, syringes, cups, etc.                                                                = $30
  • 6 yards of 6oz fiberglass 60″ wide                                                                              = $45
Total:  $559
This does not count all of the tools that I’ve used so far.  Mostly, it was just the pull saw, but the jigsaw and table saw, drill, router, bits, etc. sure come in handy.
That’s about it for this weekend.  Today, I order the sail kit from Sailrite!  We’ll see if we can turn the rig shop into a sail loft… 

Captain Chris out…

 

Eastport Pram Build: Progress as Promised – It’s All Coming Together…

So, a bunch of stuff happened this week.  Mostly good…  With the understanding that I’m trying to show the process in a bit more detail, here’s a closeup of how the middle bulkhead was tabbed in.  This is with a smaller radius than the finished fillet.  This allowed me to pull the wires out without dealing with the cured epoxy.

Closeup of tabs…

Here’s the filleting tool that I made for the finished fillets.  It’s a 2″ wide plastic scraper that will create a 1″ radius fillet as per the instructions.  I marked out the center and radius and cut/filed/sanded it to it’s final shape.

Before…

 

After…

 

Here’s what the finished fillet looks like after smoothing with denatured alcohol.  The seat supports are easy to fillet on the outside because the intersection angle is greater than 90°.  The inside is much more difficult.
Here’s what the finished fillet looks like from on top.  1″ radius on both sides creates a super strong joint because of all the surface area involved on the mating parts.  People kind of look at the wood flour fillets like they’re ugly, but all I see is a strong joint.  Remember, a little sanding will make them prettier and when the adjacent wood is epoxied and varnished, it will be considerably darker, making the contrast between the fillet and the wood less noticeable.

 

Looking straight down on center bulkhead…

 

Finished fillets smoothed with denatured alcohol…

 

There are several places in the directions where I think they leave you hanging.  One of the easier to fix ones is that you’re evidently supposed to install the center seat after you’ve created the fillets to hold the center support in place.  This means the slots cut into the ends of the seat won’t fit over the fillet, so I cut an arc in the seats to match the fillet.  This will also be covered with a fillet when I secure the seat in place.

 

Modified seat to fit around fillets…

 

After I got the center seat to fit, I immediately put the daggerboard case template in place to support the seat.  It fit perfectly!  It even matched the contour of the bottom of the boat.

 

Seat in place, supported by daggerboard case template…

It was now time to install the outwales.  I had been dreading this step.  I had to make a run to Harbor Freight to buy a dozen c-clamps.  The directions say one every eight inches, so on an 8 foot boat, that’s 12 clamps.  At $2 each, that’s a smart investment in making the boat turn out right.  BTW, I could’ve used more.  Anyway, I was now ready for the most challenging part of the build, the 8′ laminated outwales.  I had an 8′ piece of quartersawn white oak that when cut into strips fit perfectly.  I had a difficult time determining in the directions how large to make each strip (2 per side to make the bend easier).  Between the drawings and the directions, I found that each strip was 3/4″ x 1/2″, which would result in an outwale that’s 3/4″ x 1″ (plus the 1/4″ plywood, making the gunwales of the boat a respectable 1-1/4″ thick piece of wood.  A perfectly structural and stiff grip edge to the boat.

Quintessential boat builders pic…

Because I only bought enough clamps to do one side of the boat at a time, I had to do four separate layups.  Because I’m using slow hardener, that meant four nights to cure.  That was another thing I was dreading because I’m sort of in a hurry to splash this thing.  Anyway, I was able to find all kinds of other stuff to do while the outwales were curing.  There were a bunch of other parts to fabricate that I had put off.  I had originally only cut out the structural parts of the boat, but now I had an opportunity to cut out the daggerboard, case and rudder assembly parts.

Lamination complete…

BTW, make sure you start at the bow.  The curve is compound, both outwards around the curve of the boat and downwards to add some beautiful spring to the shear line.  You will definitely need a gloved helping hand with this part.  Otherwise, You’d probably smear the “butter” all over the side of the boat.  I mixed up a batch of  that was stuff enough to spread like butter down the length of the oak strip (remember, I’m making an oak version, not the standard mahogany version).  Then I spring clamped it in place, close to it’s final position.  While I was adjusting the oak and the clamp (make sure you have the clamps pre-set for the thickness of what you’re clamping including pads – read scraps – to protect the wood), I had my buddy raise or lower the other end of the strip.  This allowed me to fine-tune the strip to exactly match the curve of the hull.  If there was ever a discrepancy, I made sure the plywood edge was higher because it would be easier to sand down than if the oak strip was too high.  This method worked really well, four times, and later that week, I had the outwales all laminated.

The next step was to buy a flush cut saw from Rockler.  It was a flimsy piece of crap that barely lasted long enough to get the job done.  A flush cut saw’s teeth have no offset, so they don’t mar the surface they’re sliding against.  I normally use these to trim off wood dowels that I use to plug screw holes in furniture.  I’m hoping that I’ll be able to sand the edges without burning through the oak veneer on the transoms.  I was also amazed how the epoxy flowed in to the joints during the original lapstrake assembly process.  It’s now all exposed.  It also shows why, when people leave their transoms bright, they mask off the edges of the plywood which gets painted at the same time as the hull.

Trimmed flush with transom…

Okay, the next major step is putting together the daggerboard case.  This is an important part of the process.  Not only does it support the seat, but if you’re making the sailing version like me, you have to use the interior of the case as your template for cutting the slots in both the seat and the fiberglassed bottom of the boat!  This is step in the boat build that I’m fearing the most.  But first, you have to waterproof the interior of the daggerboard case.  Once assembled, you can’t get into the slot to epoxy it.  I applied three coats of unthickened epoxy to the “bad” sides of the two daggerboard case sides.  Of course, my boss had to touch the epoxy before it cured, but luckily it flowed back and covered the fingerprint.  The epoxy on the case sides was also a preview of what I’ll be facing when I epoxy the whole boat.  The sides had offgassing bubbles and dust nibs all over it.  If I’d been worried about how it looked, I would have had to do a considerable amount of sanding, which removes a substantial amount of the epoxy you just applied…  So after the three coats had cured, I mixed up a silica thickened cup and buttered both sides of the spacers.  The spacers were made up of three layers of 1/4″ plywood glued together to create the perfect slot width for the daggerboard (which is made up of two layers of plywood.  The extra layer leaves room for all of the layers of epoxy that will be applied to the surfaces involved.  The daggerboard slides nicely in and out, which is what you want when you sail up to the beach and have to pull the daggerboard up quickly.  Keep in mind that if you run aground with the daggerboard down, the impact shock torques the hell out of the daggerboard and case, which can seriously damage the boat.  The daggerboard case is the most structurally important part of the boat and therefore the most difficult to fix if something goes wrong.  That’s why I’ve spent the extra time to hopefully make the case assembly bullet-proof.

Daggerboard case glue up…
Daggerboard case in place.  Fits perfectly…

The directions call for screwing the daggerboard case in place to the center bulkhead and through the boat bottom with silicon bronze screws.  These are preferred by boat builders because stainless steel screws would eventually corrode because the screws will be encapsulated in epoxy, thus starving them of oxygen, removing their stainless properties.  Ironically, my company is supposed to sell silicon bronze screws, but due to internal purchasing issues, we don’t have them in stock yet.  As such, I have to go buy SB screw somewhere else.  Sigh…  At least they’re not expensive.

While all of that was going on, I cut out the hole in the front seat for the mast and installed the doubler.  I epoxied the doubler in place, then trimmed it flush with the router.  Make sure your ease the edges of things that are getting laminated first, because it’ll be much more difficult to do later after it’s glued without damaging the veneer.  This is especially important for before you install the transom doublers.

Hole for the mast.  Note the doubler underneath…

Now it’s time for another confession.  I used Titebond II, which is “weatherproof” vs. Titebond III, which is “waterproof”.  Possibly a very serious mistake, but it’s what I had a gallon of already before starting this project.  My hope is that the epoxy barrier coat protects the wood and glue, and if not, won’t the plywood swell and peel apart before the glue I used becomes an issue?  Marc Spagnola (aka The Wood Whisperer does a good job of describing this).

While we’re talking about the front seat and the slot for the mast, my front seat support fit almost 2″ farther forward than on the plans.  This was so substantial that I posted on the CLC boatbuilders’ forum about it.  Nobody got back to me about it so I forged ahead.  Now, I think I’ll have to modify the mast step base to properly secure the mast in position.  The good news is that the mast is still located in the same spot, so it shouldn’t affect the design of the boat under sail.

 

IMG_4207

Hint:  I used 5 minute epoxy to lock the thwarts in place right up against the bottom of the stiffeners.  This gave me enough structural strength to do the fillets.  Otherwise, the thwarts are kind of floppy when they’re just sitting in place.

Finally, I think I’ve decided to put a graphite bottom on my dinghy.  This will increase it’s scratch resistance while launching and also provide UV resistance while it’s upside down on my truck.  West Systems 423 is pretty much the only game in town.  I got mine from Go2Marine.com, but it’s not listed on their website.

Anyway, I’m off to sand down the outwales, the edges of all the parts I laminated this week (i.e. daggerboard, rudder assembly, etc.).  I’m ready to fit the transom doublers in place (another place where I think the instructions erred).  Now I have to custom fit the transom doublers around the large radius fillets I created when I first put the boat together.  A lot of the blogs and even the directions show the doublers already laminated to the transoms when the boat goes together, with a note that says the doublers were installed too early.  A little frustrating because now I’ll have to put another set of 1″ radius fillets over the doublers after I get them glued into place.

I think that’s about all for now.  I’ve been a bit busy actually trying to make progress to remember to stop and take pics of everything. Plus, I’m constantly distracted because I’m building this at work.  It’s been really cool though, when a family comes in to look at the boat and the dad and the son both start drooling and asking questions.  That’s pretty much the best part of this project, the product knowledge to gain and share.

Captain Chris out…

Eastport Pram Build: It’s What’s on the Inside that Counts…

Once the bottom had cured, I flipped the boat back into it’s fully upright and locked position.  The fiberglass made the hull noticeably more stiff, which is interesting because it didn’t span any joints/laps on the bottom.  I also checked square and I was only a tad bit off.  The shimming concept seemed to work, which I was quite proud of.

As instructed, seam is taped…

The directions call for taping off a region around the seam between the bottom and panel #1 to aid in making the fillet to cover the seam, which is necessary for a smooth transition for the fiberglass cloth.  There was a slight problem with this process though, which may affect the finished product.  In order to make the fillet small enough to span the gap between the tape and not leave a hardened shoulder when the tape is removed, I had to bear down on the squeegee enough to get the fillet to fit between the tape.  This caused the fillet to be a tighter radius, which caused a problem during the wetting out process.  On the next boat, I will make this fillet with a much larger radius.  Taping any seams during construction is an interesting conundrum.  The guys that don’t tape say they will next time and the guys that do tape say it’s a waste of time and tape for minimal/questionable benefits.  As with most things, I can see both sides of the argument.  I’m still on the fence about it.  Taping obviously makes a much prettier seam, but the tradeoffs are that it creates a shoulder that needs to be faired.  It does take a considerable amount of tape and it’s a bit touch and go when you should remove it.  As you can see in the photo below, taping the seams also creates more visible stains from the wood flour tinted epoxy.  I was really worried how this would look in the finished product.  I wanted to minimize sanding on the veneered plywood so I didn’t burn through it, but the plan was to leave the interior bright.

Finished fillet.  Ready for glassing…

I also took the time to do a continuous, smooth, finished fillet on the transoms to cover the tabs.  Because they intersect at greater than 90°, it’s easy to do with the modified squeegee/spreader/scraper.  You have to get the mix just right though.  Creamy peanut butter, not chunky, and not old peanut butter that’s separated.  If it’s too dry, you get a really rough fillet, too wet and it slumps.  Anyway, the glove and denatured alcohol trick worked really well.  The fillets are glossy smooth and should take very little sanding.  Also, keep in mind that these are great fillets to practice with because most of them will be covered when you enclose the air tanks.

Even using over-sized cloth, not much extra at the beam…

To glass the interior, I laid it all out and hand smoothed it again and taped up the excess cloth against the sides.  BTW, I got the cloth through one of our vendors at work and due to a serendipitous purchasing glitch, I got cloth that was a bit wider than CLC recommends.  As you can see, at the beam of the boat, my wider cloth BARELY covered up to the garboard.  Whew!  Go with the wider cloth, it’s worth the peace of mind…

Interior glassed.  Not without learning a few harsh lessons.  Next boat…

The wetting out procedure was considerably more complicated due to the filleted seam between the bottom and the garboard.  It kept wanting to create a bubble under the cloth.  A tad more resin and some creative squeegeeing secured it.  By the time I got toward the other end of the boat, the first end was starting to tack up.

Once I was done wetting it out, I made the biggest mistake of the project so far (as referenced earlier).  I neglected to review the directions and I sliced the wet cloth along the lap seam between the garboard and panel#2.  It kind of pulled the cloth and left strands showing and created some bubbles under the cloth.  Thankfully, these were mostly at the ends, which will be inside the air tanks, so no problemo.  I also had to pull tiny slivers of blue tape out of the seam because I sliced it with the razor knife while trying to remove the excess cloth.  I just happened to reread the directions for the nth time after wrestling with it and it clearly states to let the cloth cure then cut it out.  Since I cut the excess cloth off the ends of the transoms the next morning after glassing the bottom, I now know how much easier it is to cut the saturated cloth after it has cured.  It slices like stiff cardboard.  My ragged edge meant that I had to spend an extra half hour sanding the edge of the fiberglass, which may actually show in the final product.  We will see.  Only after a few coats of epoxy will I be able to tell if this was a total biff…

Bulkheads tabbed in…

 

Flush with the lack of success from the fiberglassing the interior, it was time to install some bulkheads.  When I removed the wired in bulkheads, the hull only flexed 1/16″, removing the necessity of having to install the spreader mentioned in the instructions.  This made me feel really good about the build and the glassing so far.

Next step, finishing the fillets…

Let’s take a minute to examine where we are time-wise at this point.  These are extremely loose numbers, but I think are a very fair representation of how many “lunch hours” I’ve spent on this project.

Let me also take a minute to reinforce (pun intended) that my choice to tab the boat together first, remove the wires, then go over it with a finished fillet turned out to be the best decision a novice boat builder could make.  Like I said, I think it should be explicit in the instructions to use this technique as the ramifications of not doing so are substantial.  BTW, other than the CLCBoats.com forum, there is no Eastport Pram builder forum like there is for the Passagemaker dinghy PMDBuilders.net.  Hmmm…

  • Layout and cutting parts used so far (not all parts)   = 20 hours
  • Laminating parts (transoms, bulkheads and skeg)   = 5 hours
  • Wiring parts together                                                       = 5 hours
  • Fiberglassing bottom & inside                                       = 5 hours
  • Installing bulkheads, tabs & fillets                                 = 5 hours

Total:  40 hours

Wow!  I wonder how long it will take me to recoup the hours building with hours sailing.  Hopefully some time next year.  Speaking of which, I’m already seriously considering building a Passagemaker…

Captain Chris out…